
Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Capitalizing on opportunistic citizen science data to monitor urban
biodiversity: A multi-taxa framework
Corey T. Callaghana,b,⁎, Ian Ozeroffc, Colleen Hitchcockd, Mark Chandlerc

a Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
b Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
c Earthwatch Institute, 1380 Soldiers Field Rd, Boston, MA, USA
d Biology Department, Brandeis University, 415 South Street, Waltham, MA, USA

A R T I C L E I N F O

Keywords:
Citizen science
Community science
Participatory science
Community-based monitoring
Urban ecology
Urban tolerance
Sampling biases
iNaturalist, species occurrence data

A B S T R A C T

Monitoring urban biodiversity is increasingly important, given the increasing anthropogenic pressures on bio-
diversity in urban areas. While the cost of broad-scale monitoring by professionals may be prohibitive, citizen
science (also referred to as community science) will likely play an important role in understanding biodiversity
responses to urbanization into the future. Here, we present a framework that relies on broad-scale citizen science
data –– collected through iNaturalist –– to quantify (1) species-specific responses to urbanization on a con-
tinuous scale, capitalizing on globally-available VIIRS night-time lights data; and (2) community-level measures
of the urbanness of a given biological community that can be aggregated to any spatial unit relevant for policy-
decisions. We demonstrate the potential utility of this framework in the Boston metropolitan region, using >
1000 species aggregated across 87 towns throughout the region. Of the most common species, our species-
specific urbanness measures highlighted the expected difference between native and non-native species. Further,
our biological community-level urbanness measures –– aggregated by towns –– negatively correlated with en-
hanced vegetation indices within a town and positively correlated with the area of impervious surface within a
town. We conclude by demonstrating how towns can be ‘ranked’ promoting a framework where towns can be
compared based on whether they over- or under-perform in the urbanness of their community relative to other
towns. Ultimately, biodiversity conservation in urban environments will best succeed with robust, repeatable,
and interpretable measures of biodiversity responses to urbanization, and involving the broader public in the
derivation and tracking of these responses will likely result in increased bioliteracy and conservation awareness.

1. Introduction

We are currently facing the 6th mass extinction event in the
Anthropocene, and biodiversity is increasingly at risk from various
anthropogenic pressures (Ceballos and Ehrlich, 2002). Monitoring how
biodiversity responds to both threats (e.g., pollution, habitat loss, in-
vasive species, climate change, and other anthropogenically-derived
pressures) as well as interventions for enhancement (e.g., habitat re-
storation, green infrastructure) is essential to understand how best to
preserve and manage our collective biodiversity. Biodiversity plays a
key role in regulating ecosystem processes, and as acts as an ecosystem
service in itself, subject to valuation (Mace et al., 2012). This, combined
with the increased recognition that human well-being is positively
linked with increased biodiversity highlight the necessity of monitoring
changes in biodiversity (Davies et al., 2019). But current funding for
conservation science is failing to keep pace with the increased necessity

to fully understand and monitor biodiversity change in response to
varied anthropogenic pressures (Bakker et al., 2010). So, how then can
we monitor biodiversity cost-effectively, with the aim of understanding
how biodiversity responds to anthropogenic changes?

Broad-scale citizen science or community science projects likely
provide necessary data to monitor biodiversity into the future (Bonney
et al., 2009; Chandler et al., 2017; McKinley et al., 2017). Citizen sci-
ence –– the collaboration between members of the public, regardless of
citizen status in a particular jurisdiction, with professional scientists ––
projects are increasingly used in natural resource management,
ecology, and conservation biology (McKinley et al., 2017). And the
number of such projects is simultaneously increasing (Pocock et al.,
2017). For example, citizen science data have been used to increase the
accuracy and specificity of threat levels of endemic birds in the Western
Ghats (Ramesh et al., 2017), identify the important role temperature
plays in sexual coloration in a dragonfly (Moore et al., 2019), identify
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new records and range extensions (Rosenberg et al., 2017), and quan-
tify biodiversity changes in space and time (Cooper et al., 2014). These
are only a select few examples. Despite the increasing prevalence of
citizen science data (Pocock et al., 2017), there is still reluctance to
fully adapt such data in wide-spread monitoring of biodiversity (e.g.,
Burgess et al., 2017). This is, in part, likely due to the biases generally
associated with citizen science data (Boakes et al., 2010). Such biases
include increased sampling on weekends (Courter et al., 2012), taxo-
nomic preferences for ‘charismatic’ fauna and flora (Ward, 2014), and
generally skewed data collections to areas with large human popula-
tions (Kelling et al., 2015). This latter bias is generally problematic for
any citizen science project with semi-structured or unstructured data
collection (Kelling et al., 2019).

While this sampling bias towards urban areas can limit our in-
ferences surrounding biodiversity in natural, remote regions (Callaghan
et al., 2020a), it offers opportunities to better understand urban eco-
logical and conservation questions (Cooper et al., 2007) and can com-
plement biases ecologists have in sampling predominantly protected
areas (Martin et al., 2012). Indeed, citizen science data have recently
been leveraged to understand many aspects of urban ecology (e.g.,
Boukili et al., 2017; Li et al., 2019; Leong and Trautwein, 2019). And
citizen science data may provide a relatively cost-effective method to
monitor biodiversity in urban areas (Callaghan et al., 2019b), including
private lands which are often only accessible to private landowners
(e.g., Li et al., 2019). This is critical, given the fact that urbanization is
an intense anthropogenic pressure, and habitat loss and fragmentation
associated with urban land transformation has generally negative im-
pacts on biodiversity (Cincotta et al., 2000; McKinney, 2006). Further,
the importance of fully using citizen science data in urban areas is made
clear because: (1) urban areas are where many people experience
nature, and thus involving urban residents in citizen science projects
can have flow-on effects for conservation (Lepczyk et al., 2017), be-
cause people are more likely to take conservation action when they
have direct experiences with nature (i.e., the pigeon paradox; Dunn
et al., 2006); (2) citizen science biodiversity research provides educa-
tion benefits to participants (Jordan et al., 2011) with the potential to
increase bioliteracy, benefitting biodiversity inside and outside of cities
(Ballard et al., 2017); (3) urban areas can act as vessels for conservation
(Dearborn and Kark, 2010); and (4) urban areas can even protect
threatened species (Ives et al., 2016).

Given the importance of understanding urban biodiversity, and the
potential for citizen science data to enhance this understanding and
increase bioliteracy, the use of citizen science data needs to be validated
to better understand how these data can be used in future monitoring of
urban biodiversity. By increasing the bioliteracy of participants in ci-
tizen science projects a positive feedback cycle can be initiated, leading
to an increase in the quality of the data (i.e., people become better at
identifying and finding specific species) as the project continues. Many
people have quantified the relationship between citizen science data
and ‘professional’ data (Kosmala et al., 2016; Aceves-Bueno et al.,
2017). But most comparisons have been from semi-structured citizen
science datasets (e.g., eBird). Opportunistic citizen science projects
(e.g., iNaturalist) likely have their own sets of biases (Brown and
Williams, 2018), but are showing promise in helping to deduce patterns
of biodiversity across urban environments (Leong and Trautwein, 2019;
Li et al., 2019). The development of repeatable and robust methods that
harness the power of citizen science data may not only help monitor
biodiversity responses to urbanization but potentially help bridge the
translation gap from science to urban planning and conservation action
(Norton et al., 2016).

iNaturalist is one of the most popular global biodiversity recording
platforms with over 33 million observations of 250,000 species made by
more than 800,000 observers. Moreover, data from iNaturalist is the
second most downloaded source of data from the Global Biodiversity
Information Facility. Here, we use opportunistic (i.e., generally col-
lected in an unstructured format) iNaturalist data from the

metropolitan region of Boston, USA to detect and understand patterns
in biodiversity across an urban to rural gradient. Urban environments
differ from natural landscapes in many ways, and efforts to understand
these differences (e.g., land use, fragmentation, disturbance) often rely
on land use analyses (e.g., Pearse et al., 2018; Li et al., 2019; Leong and
Trautwein, 2019). A global dataset of night-time lights has allowed for
an approach to analyze the response of organisms to urbanization on a
continuous scale, and has thus far been used to understand patterns in
urban bird biodiversity at local and regional scales using eBird citizen
science data (Callaghan et al., 2019a, 2019b, 2020b). Here we look to
test whether opportunistically-collected iNaturalist data can similarly
help to detect patterns in biodiversity across urbanization gradients,
scaling from species-specific responses to town-specific measures of the
urbanness of the biological community within that town. Our approach
highlights how directed efforts of sampling such as the City Nature
Challenge hold potential for building both a robust dataset to under-
stand patterns of biodiversity responses to urbanization and increase
public awareness of surrounding urban biodiversity.

First, we assess the sampling biases of participants contributing
opportunistic citizen science iNaturalist observations, as it pertains to a
continuous gradient of urbanization –– defined using night-time lights
–– available to sample across. We hypothesized that the degree of ur-
banization in a town would be positively correlated with the degree of
urbanization of the observations in that town (i.e., more urban towns
would have more urban observations). We then use these citizen sci-
ence data to assign species-specific measures of urban tolerance, de-
fined as the median night-time lights value of all observations for a
species. From this, we produce town-specific measures of the urbanness
of the collective species found therein, defined as the median of all
species-specific measures of urban tolerance. We hypothesized that the
relationship between the underlying degree of urbanization in a town
and the cumulative town-specific urban tolerance of the species found
therein would be positively correlated. We then demonstrate how these
town-specific measures of urbanness can be used in an ecological con-
text by showing the relationship between the town-specific urbanness
and its ecological attributes (i.e., tree cover, impervious surface, and
enhanced vegetation index). And lastly, we provide a forward-looking
approach to compare individual planning units (e.g., towns) among one
another in regards to the "urbanness" of their biodiversity. Ultimately,
we highlight a framework that is robust and uses globally-available
datasets (i.e., VIIRS night-time lights and iNaturalist citizen science
data) to better understand how to fully realize the potential of citizen
science data to understand urban biodiversity. Because of the ubiquity
of iNaturalist data in cities and availability of a global night-time lights
data set, we expect this approach can be successfully applied to increase
awareness of and manage urban environments worldwide.

2. Methods

2.1. Study area

We used the Boston metropolitan region (Fig. S1) as a case study to
demonstrate the applicability of using citizen science data to monitor
the urbanization of species and communities. This region was chosen
because it has been documenting urban biodiversity since 2017 as part
of the City Nature Challenge (hereafter CNC; https://
citynaturechallenge.org/) –– an annual challenge begun in 2016 by
the California Academy of Sciences and the Natural History Museum of
Los Angeles. The CNC focuses on encouraging city residents to docu-
ment biodiversity during a 4-day bioblitz where cities are challenged to
celebrate urban biodiversity on a global scale. The Boston CNC area
includes a both urban and rural habitats and starts from the city of
Boston extending to the outer limits, bounded by highway 495 –– a
large ring road that circumnavigates the City of Boston approximately
50 kms from Boston City centre. The Boston CNC area is made up of
varied habitats, including varying degrees of residential, commercial,
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and industrial land use, upland forests, wetlands, lakes and ponds, and
coastlines (Fig. S1). It offers a wide range of taxa that have been ob-
served and submitted to iNaturalist with over 8000 species currently
observed at least once. Our analyses are restricted to the Boston CNC
area and data were split into the different municipal towns within this
region to aggregate observations, using the town shapefile downloaded
here: https://docs.digital.mass.gov/dataset/massgis-data-community-
boundaries-towns-survey-points. The resulting area includes 147
towns (or parts of towns for towns which were intersected by the
Boston CNC area) that met our minimum surface area (5 km2) re-
quirements for analyses.

2.2. iNaturalist citizen science data

iNaturalist (www.inaturalist.org) is a multi-taxa opportunistic ci-
tizen science project hosted by the California Academy of Sciences and
National Geographic Society. Participants contribute observations (e.g.,
photos, recordings) of any living organism through a smart-phone or
web-portal with location and date assigned. Records are then tagged
and identified to the lowest possible taxonomic resolution by other
iNaturalist community members. iNaturalist provides a coordinate un-
certainty for each observation location – which can be adjusted to ob-
scure sensitive data. To allow for fine-grain spatial analysis, we limited
our dataset to a coordinate uncertainty less than 30 m. (For more details
on the iNaturalist methodology, see here: https://www.inaturalist.org/
pages/getting+started.) Those observations with sufficient community
agreement on taxon identity meet the “research grade” criterion, and
are regularly uploaded to the Global Biodiversity Information Facility
(GBIF). We downloaded iNaturalist observations from the Global
Biodiversity Information Facility for the period between 07/22/1922
(the first observation in our dataset) and 08/28/2019 for the con-
tiguous United States (GBIF Download, 2019). Accordingly, the tax-
onomy in our analysis follows that of GBIF (see: https://www.gbif.org/
dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c).

iNaturalist samples across all taxa, but we restricted our analysis to
species observed within the Boston CNC area at least once. Fish were
removed taxonomically (Myxini, Petromyzontida, Hyperoartia,
Chondrichthyes, Actinopterygii, or Sarcopterygii), and marine species were
excluded through cross-referencing with the World Registry of Marine
Species (WoRMS Editorial Board, 2020), as there was no a priori ex-
pectation that they would be impacted by terrestrial urbanization
measures (see below). Additionally, we excluded birds (Aves) as others
have previously investigated the relationship between birds and urba-
nization (e.g., Callaghan et al., 2019a), because birds are highly sea-
sonal in nature compared with other taxa, and other sources of data
(e.g., eBird) would better represent bird occurrence than iNaturalist
data. A full list of taxa investigated in our analyses is available in Table
S1. We classified species as either native or non-native as defined by the
Go Botany New England website (https://gobotany.nativeplanttrust.
org/) for plants and iNaturalist for other taxa.

2.3. Species-specific urban scores

Our goal was to assign a species-specific measure of urbannesss (i.e.,
urban score) for each species, creating a continuum of urban tolerance
across species from the most urban tolerant to the least urban tolerant
species (sensu Callaghan et al., 2020b). These species-specific urban-
ness scores were first derived from a regional dataset incorporating all
observations of that species throughout a larger region than the Boston
CNC area. This region was constructed using the Commission for En-
vironmental Cooperation (CEC)'s North American ecoregion designa-
tions (https://www.epa.gov/eco-research/ecoregions), and outlining
the ecoregions that make up the Boston CNC area with a bounding box
(Fig. S2).

Using all observations for each species within that ecoregion, we
calculated the underlying VIIRS night-time lights value (Elvidge et al.,

2017) for every observation using Google Earth Engine (Gorelick et al.,
2017). VIIRS night-lights values are available at the 500 m2 scale. VIIRS
night-time lights is a continuous proxy for urbanization, and uses a
number of algorithms to exclude background noise including solar and
lunar contamination, data degraded by cloud cover, and features un-
related to electric lighting such as wildfires (Elvidge et al., 2017). These
night-time lights data have previously been used to track human po-
pulation at many different scales (Zhang and Seto, 2013). We ac-
knowledge that although we use VIIRS night-time lights as a proxy for
urbanization, species are differentially impacted by ambient light pol-
lution (e.g., Longcore and Rich, 2016), and it may be difficult to dis-
tinguish between whether species are responding to urbanization or
night-time lights itself (i.e., ambient light pollution). Species respond
differently to the intensity, direction, and duration of ambient light
(Longcore and Rich, 2016); most of which is not captured in the mea-
surement of VIIRS night-time lights. And because intensity, direction,
and duration of the night-time lights varies temporally and seasonally,
by taking the mean VIIRS of many nights (and across years), we likely
are producing a measure that better corresponds with urbanization at a
500 m2 scale than it does the possible influences of ambient light pol-
lution on specific species.

After each observation was assigned the VIIRS night-time lights
value, a species was accordingly left with a continuous distribution
(e.g., Fig. 1). We defined a species-specific measure of urbanness as the
median VIIRS value across a species' entire regional distribution of
observations. Theoretically, a species with a negatively-skewed dis-
tribution would be a species which prefers and is well-adapted to urban
areas, whereas a species with a positively-skewed distribution is a
species which prefers non-urbanized areas, and there are many gen-
eralist distributions possible accounting for the continuum of species-
specific responses to urbanization (see Callaghan et al., 2020b for de-
tails).

After the taxonomic filtering of the data, we included only species
which had at least 100 regional observations to help ensure sufficient
observations for a species to accurately represent its urbanness
(Callaghan et al., 2019a, 2020b). We were then left with 1004 species
from the Boston CNC area with regional urban scores (Table S1). In
order to test whether the regional urbanness scores were representative
of species' scores within the Boston CNC area, we calculated a “local
Boston urbanness” measure for the 97 species with > 50 observations
only using the VIIRS night-time lights values for each species within the
Boston CNC area. There was a strong agreement between the regional
and Boston specific approaches (Fig. S3; R2 = 0.64, p-value < 0.001),
demonstrating that regional scores are a good representation of how
biodiversity responds at a local scale (e.g., Callaghan et al., 2020b). By
using the regional scores, we were able to incorporate more species into
our downstream analyses.

2.4. Community-level urban scores

Using these regional species-specific urban scores, we then devel-
oped town-specific measures of how urban the community of species
observed was for any given town –– subsequently referred to as the
“Town Biodiversity Urbanness Index” This was done by taking the list
of distinct species observed in a given town (that we had sufficient
species-specific urbanness measures for) and taking the median of this
distribution of urban tolerance scores (e.g., Callaghan et al., 2019b).
But because many towns within the Boston CNC area have been rela-
tively poorly sampled (Figs. S4, S5), we only investigated towns with a
minimum of 30 observations (chosen based on exploratory analysis in
the variance based on a priori local knowledge of species in the region),
leaving us with a total of 87 towns used to make comparisons among.
Across these 87 towns used in the analysis, the median species richness
was 69 and the minimum species richness was 18.
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2.5. Assessing sampling biases related to urbanization

In order to interpret our Town Biodiversity Urbanness Indices we
investigated biases associated with these scores. To do so, we calculated
two additional distributions specific to a given town: (1) the distribu-
tion of VIIRS night-time lights value for all observations (regardless of
species observed) in a town (Fig. S6) –– which we call the
“Opportunistic Observation Index”; and (2) the distribution of VIIRS
across all underlying pixels in a town as an index of town urbanization
–– which we call the “Town Underlying Urbanness Index” (Fig. S7). The
first two were calculated by using the VIIRS values already assigned to
all observations as described above, whereas the latter was done by
extracting the pixels from within each town from the VIIRS night-time
lights in Google Earth Engine. The gradient of Town Underlying
Urbanness Index across the 87 towns used in downstream analyses
ranged (examples in Fig. S7) from highly rural (26 towns had Town
Underlying Urbanness Index < 2; e.g., Concord Town Underlying
Urbanness Index = 1.4), to urbanized (25 towns with a Town
Underlying Urbanness Index > 10), to highly urbanized (7 towns with a
Town Underlying Urbanness Index > 20; e.g., Boston Town Underlying
Urbanness Index = 44). These three distributions (Town Biodiversity
Urbanness Index, Town Underlying Urbanness Index, Opportunistic
Observation Index; e.g., Fig. S8) for each town allowed us to draw
comparisons between a town's measure of urbanness (i.e., Town
Underlying Urbanness Index), where iNaturalist observations occurred
(i.e., Opportunistic Observation Index), and the degree of urbanness of
the species assemblage observed in that town (i.e., Town Biodiversity
Urbanness Index).

First, we tested whether where people sample changes depending on
the level of urbanization within a town by comparing the relationship
between the observations in a town with a town's underlying urbanness
index hypothesizing that as a town became more urban (i.e., higher
Town Underlying Urbanness Index) the observations within that town
would also become more urban (i.e., higher Opportunistic Observation
Index). Second, we compared the median urbanness of all species found
in a town (Town Biodiversity Urbanness Index) with the town's

underlying urbanness (Town Underlying Urbanness Index), hypothe-
sizing that as a town became more urban (i.e., higher Town Underlying
Urbanness Index), the mix of species found there would comprise a
greater fraction of urban tolerant species (i.e., higher Town Biodiversity
Urbanness Index). These relationships were quantified using linear
models for the 87 towns with > 30 observations where the respective
distributions were collapsed as the median of that distribution (Fig. S8),
and both the predictor variables (i.e., Opportunistic Observation Index
and Town Biodiversity Urbanness Index, respectively) and the response
variables (Town Underlying Urbanness Index in both instances) were
log-transformed.

2.6. Ecological attributes influencing the species assemblage of a town

After assessing the relationship between the species median and the
underlying urbanization of a town, we demonstrated how the Town
Biodiversity Urbanness Index can be used to test ecological predictions
using macro-ecological characteristics for each town. The character-
istics we used were the percent of tree cover, mean Enhanced
Vegetation Index (EVI), and mean impervious surface within a town
(sensu Callaghan et al., 2018). We fitted a linear regression model to
test the relationship between the Town Biodiversity Urbanness Index
values for the towns and the macro-ecological characteristics associated
with each town. The response variable was log-transformed Town
Biodiversity Urbanness Index and the predictor variables were tree
cover, mean EVI of a town, and mean impervious surface of a town. We
also included Town Underlying Urbanness Index (i.e., the median of the
town's underlying pixels of VIIRS night-time lights) in the model as a
covariate, and we used weights where weights were the number of
observations originating from a town, providing more confidence to
that town's relationship in the model-fitting procedure. Variables
showed minimal multi-collinearity prior to modelling.

2.7. Data availability

Code and data necessary to reproduce these analyses are available at

Fig. 1. Eight example species –– chosen based on their prevalence in the Boston CNC area –– and their distributional response to VIIRS night-time lights (on a log10-
scale), showing an example of the differences among species. The red line represents the median. This was repeated for every species with > 100 observations in the
continental region (Fig. S2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a Zenodo repository, accessible here: https://doi.org/10.5281/zenodo.
4003011.

3. Results

We used a total of 643,000 iNaturalist observations from the re-
gional scale (Fig. S2), and 20,292 observations from the Boston CNC
area contributed by 2085 observers (mean observations per observer:
9.7; range:1–788; sd: 40.7). A total of 2023 species from the regional
scale met our criteria, with 1004 of these corresponding with at least
100 observations, and thus being used in our local-level analyses (Table
S1). The 1019 species not included in our analyses accounted for <
10% of all research grade observations submitted within the Boston
CNC area. Taxonomically, the 1004 species used in analyses corre-
sponded with a total of 9 phyla, 27 classes, 95 orders, and 280 families.
Tracheophyta comprised 63% of observations, followed by Arthropoda
(21%), Chordata (13%), Basidiomycota (2%), while Ascomycota,

Mollusca, Mycetozoa, Annelida, and Bryophyta all comprised < 1% of
all observations.

The species-specific urban scores followed a log-normal distribu-
tion, with the mean urbanness being 5.07 ± 7.85 SD (Fig. 2a). The
three most urban species from the regional urban scores were Japanese
creeper Parthenocissus tricuspidata (55.51), tree-of-heaven Ailanthus al-
tissima (50.15), and northern seaside goldenrod Solidago sempervirens
(48.37). Conversely, the three least urban species in the regional urban
scores were Canadian bunchberry Cornus canadensis (0.21), threeleaf
goldthread Coptis trifolia (0.21), and frosted whiteface Leucorrhinia fri-
gida (0.22). Native species dominated the species commonly observed
within the Boston metropolitan region: of the 223 species with at least
20 observations, 142 were native and 81 were non-native species.
While some of the non-native species found in this study in the more
urbanized towns are commonly thought of as synathropes (American
cockroach Periplaneta americana, common dandelion Taraxacum offici-
nale), those species with the highest urbanness scores were lawn/yard

Fig. 2. a) The species-specific regional
urban scores for 1004 species found in the
Boston region; the distribution follows a
log-normal distribution with some species
being very urban (e.g., Eastern Gray
Squirrel) and others being less urban (e.g.,
Spring Peeper), compared with the majority
of species which are distributed between.
The y-axis represents the number of species
which fall into the specific bin corre-
sponding with the x-axis. Five example
species, chosen based on their prevalence in
the Boston CNC area are displayed. b) The
223 species with > 20 observations in the
Boston CNC area and their species-specific
regional urban scores (as in a) stratified to
their status as native or non-native.
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plants (e.g., Broadleaf plantain Plantago major, common woodwort
Artemisia vulgaris) or common to disturbed sites such as road sites or
park entrances (e.g., garlic mustard Allaria petiolata, Japanese knot-
weed Reynoutria japonica, tree of heaven Ailanthus altissima). Several
native species also had high urban scores including some common sy-
nanthropes (e.g., gray squirrel Sciurus carolinensis), lawn/yard taxa
(e.g., fleabane Erigeron Canadensis) and species which exploit dis-
turbances (e.g., American pokeweed Phytolacca americana). Native
species also tended to be less urban tolerant than non-native species
(i.e., native species' observations corresponded with lower VIIRS night-
time lights values than non-native species). The mean urbanness of
natives was 3.67 ± 5.36 compared with 10.9 ± 10.0 for non-native
species (t = 8.923, p-value < 0.001; Fig. 2b). Whereas 78% of the 99
species with an urban score less than two were native, only 22% of the
45 species with an urban score greater than ten were native.

We found that the Opportunistic Observation Index (i.e., the median
night-time lights value of all observations in a town) correlated very
closely with Town Underlying Urbanness Index (i.e., the median of the
VIIRS night-time lights value of underlying pixels for that town)
(Fig. 3). While there may be variation from town to town, as a whole
there was not strong bias towards or against sampling from more nat-
ural (or disturbed) areas in towns in the Boston region (Figs. 3, S9;
R2 = 0.73, p-value < 0.001). This suggests that the Boston iNaturalist
community does not show a strong bias in where they sample with
respect to the degree of urbanness found in a town: users are not pre-
ferentially choosing lighter or darker areas among towns to make their
observations. This relationship appeared to be invariant to the number
of observations in a town (Fig. S10) –– suggesting that the patterns
observed would not change by increasing sample size. Furthermore, the
Town Biodiversity Urbanness Index did not appear to move towards the
town's underlying median urbanness score as the number of observa-
tions in a town increases, suggesting that simply increasing opportu-
nistic sampling would not alter the Town Biodiversity Urbanness Index
for a town (Fig. S11). Towns that are more urbanized (i.e., higher Town
Underlying Urbanness Index) also were shown to have species with
higher urbanness scores (i.e., with higher Town Biodiversity Urbanness
Index) but there was significant variability in this relationship (Fig. 3).
For the more rural towns –– with a Town Underlying Urbanness Index
of 3 or less (e.g. Concord see Fig. S8) –– the median values for those
species found had a similar degree of urbanness (i.e., Town Biodiversity
Urbanness Index) to the town itself. However, as the towns became

more urban –– with a Town Underlying Urbanness Index above 3 (e.g.,
Waltham) –– Town Biodiversity Urbanness Index did not track at the
same pace as the increasing Town Underlying Urbanness Index; as
fewer species matched the increasing urbanness values of the towns
(Fig. S8).

Town Biodiversity Urbanness Index was negatively related to the
mean EVI in a town and was positively associated with the mean im-
pervious surface in a town (Fig. 4; Table 1), and unsurprisingly was
significantly related to the Town Underlying Urbanness Index of a town
(Fig. 3; Table 1). Towns with more vegetation and/or trees also had an
observed species assemblage that was less urban (i.e., lower Town
Biodiversity Urbanness Index) and conversely towns with greater area
of impervious surface had an observed species assemblage that was
more urban (i.e., higher Town Biodiversity Urbanness Index; Fig. 4).

We took the residuals from the relationship between Town
Underlying Urbanness Indexand Town Biodiversity Urbanness Index
(e.g., Fig. 3), allowing each town to be ranked by the degree to which
they have relatively more or fewer urban tolerant species found there
(Fig. 5). Towns that underperform (i.e., have relatively fewer urban
species than predicted) include several coastal towns north of Boston
(e.g., Newburyport, Duxbury), but also include towns that are con-
sidered more urbanized (e.g., Arlington, Salem and even Somerville ––
considered the most densely populated city in the United States).
Conversely, towns that overperform (i.e., have more than the predicted
assemblage of urbanized species recorded) included surbuban towns
such as Winchester and more rural towns such as Littleton. No obvious
geographic patterns emerged by mapping these towns (Fig. 5), sug-
gesting that local-level influences (i.e., habitat characteristics) likely
lead to over- or under-performance of a given town.

4. Discussion

We used data from iNaturalist –– a successful citizen science project
–– to highlight the utility and practicality of opportunistic citizen sci-
ence data to understand species and biological community-level re-
sponses to urbanization. First, the approach of assigning species-specific
measures of urbanness based on underlying distributional response to
VIIRS night-time lights can clearly highlight and differentiate species-
specific responses to urbanization on a continuous scale (Callaghan
et al., 2020b). This was highlighted by considering the most abundant
223 species from the Boston CNC region, where we expectedly found

Fig. 3. Relationship between the log-trans-
formed Town Underlying Urbanness Index (x-
axis) and both the log-transformed
Opportunistic Observation Index and the Town
Biodiversity Urbanness Index (y-axis). Blue is a
one-to-one line. And linear regressions are
shown for each variable. The residuals between
the Town Underlying Urbanness Index and
Town Biodiversity Urbanness Index were ex-
tracted for further analyses. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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the mean urbanness scores of non-native species to be more than twice
that of natives. Such continuous information at the species-level is in-
formative for understanding species' traits that predict presence in
urban environments (Duncan et al., 2011; Lepczyk et al., 2017; Pearse
et al., 2018; Borowy and Swan, 2020), and understanding which species
may deserve critical conservation attention in urban areas (Duncan
et al., 2011; Lepczyk et al., 2017). Second, we were able to scale our
species-specific approach to community-level metrics, quantifying the
urbanness of a given community within a geopolitical region (i.e.,
towns). While traditional community-level measures of biodiversity
(e.g., species richness, Shannon diversity) are certainly informative, a
measure of the biological community's response to urbanization (i.e.,
the Town Biodiversity Urbanness Index) –– derived from species-spe-
cific urbanness scores –– can properly capture how a biological com-
munity is responding to urbanization. For example, two communities
could have “equal” species richness values, but one of these commu-
nities could be dominated by synathropic species adapted to urbani-
zation, whereas the other community could comprise less urbanized
species which should be encouraged to persist in urban areas
(Callaghan et al., 2019b). Of course, there will always be species that
have a predisposition to persist in urban environments, whereas not all
species can be expected to become ‘urban species’ (i.e., Moose are not

expected to persist in downtown Boston). Importantly, our framework
can help to understand the complex set of barriers and threats in the
urban matrix by providing organismal-level responses to urbanization
(e.g., native vs. non-native species), combined with local interpretation
of which species could be targeted for persistence based on detailed
natural history knowledge (see Fig. 6). Moreover, as urban environ-
ments are managed or change, we can assess species' responses to these
interventions to better understand the impact of our activities on local
biodiversity.

Here, we briefly highlighted the utility of our framework by corre-
lating Town Biodiversity Urbanness Index with macro-ecological char-
acteristics. We found that the mean EVI and percent tree cover (to a
lesser extent) was, unsurprisingly, negatively correlated with the Town
Biodiversity Urbanness Index and the impervious surface area was po-
sitively correlated with the Town Biodiversity Urbanness Index (Fig. 4).
Clearly, supporting green infrastructure in urban areas will have sig-
nificant effects on the species that can persist there. We also showed
how towns may “perform” with respect to the degree of urbanness of
the species present (Fig. 5) –– with some towns underperforming (e.g.,
Marshfield; see interactive figure here) by having more urbanized
species recorded than would have been predicted based on the town's
underlying degree of urbanness. Town managers and community
members might be able to use the relative “naturalness” of their bio-
logical community –– as recorded by the public –– to boost civic pride
and take action to protect and build awareness of its biodiversity value.
Conversely, towns which overperform by having fewer urban species
found there than would be predicted by the underlying degree of ur-
banness for that town (e.g., Winchester) could be motivated to protect
or enhance the remaining green areas and reduce threats to limit more
natural species.

Several approaches have emerged to address the need to understand
how biodiversity responds to urbanization. These approaches include
comparisons across urban to rural gradients (e.g., McKinney, 2006),
comparisons across a series of networked patches such as lawns or parks
(Zipperer, 2002; Rega et al., 2015; Locke et al., 2018) or hierarchical
landscape units (Breuste et al., 2008; Li et al., 2019), and taxonomic
comparisons across cities (e.g., Duncan et al., 2011; Pearse et al., 2018;

Fig. 4. The relationship between three macroecological variables (EVI = Enhanced Vegetation Index) extracted from each town (N = 87) where there were at least
30 iNaturalist observations and the log-transformed Town Biodiversity Urbanness Index for each town (i.e., community-level urbanness).

Table 1
Results of a multiple linear regression model where the town-specific commu-
nity urbanness measure (i.e., Town Biodiversity Urbanness Index) was the re-
sponse variable, log-transformed. The urbanness of a town (i.e., Town
Underlying Urbanness Index) was included as a covariate as this was correlated
with the Town Biodiversity Urbanness Index (Fig. 3). Significant variables are
in bold.

Term Estimate Standard error t-Value p-Value

Intercept 0.443 0.087 5.109 < 0.001
Town urbanness 0.005 0.001 3.553 < 0.001
Trees 0.000 0.002 0.005 0.996
EVI −0.612 0.221 −2.763 0.007
Impervious surface 0.004 0.001 3.159 0.002
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Borowy and Swan, 2020). Like much of New England, the urban region
surrounding Boston is losing open greenspace –– with active scenario-
planning about how best to protect greenspace (Kittredge et al., 2015;
Foster et al., 2017; Ricci et al., 2020). Most of this effort in New Eng-
land revolves around promoting forest or greenspace conservation
using traditional metrics such as extent of protected land, habitat
connectivity, and presence of rare and endangered species, among
others (Kittredge et al., 2015; Foster et al., 2017; Ricci et al., 2020),
without much integration of a fuller description of the response of
biodiversity to those greenspaces. The development of a biodiversity
urbanness index such as that proposed here can complement the ex-
isting habitat and rarity indices and help to inform conservation plan-
ning frameworks and bridge the acknowledged gap between the in-
formation derived by scientists and practitioners who plan and manage
the environment (e.g., Norton et al., 2016).

Developing pro-conservation attitudes by many small land-owners
is critical in building the needed social capital to avoid loss of important
natural habitats (Kittredge et al., 2015). The choice of monitoring tools
and who is engaged in the process will not only influence the data
collected, but also the uptake of the outcomes by policy makers as well

as community members who will ultimately decide the fate of those
lands. Making sure the research is accessible and relevant is essential to
its uptake by planners and the broader community (Theobald et al.,
2000; Norton et al., 2016). Theobald et al. (2000) articulates this well:
“Probably the most important of these is the idea that ecological data
and analysis must be understood by those who will be affected by the
decisions. In other words, individuals participating in planning pro-
cesses ‘will not support what they do not understand and cannot un-
derstand that in which they are not involved’ (FEMAT 1993, II-80).” By
increasing the bioliteracy of participants in iNaturalist –– and other
citizen science projects –– it may be possible for changes in actions and
attitudes towards urban biodiversity, and conservation more generally.
As Heberlein (2012) highlights, norms will be necessary to influence
behavioral change to overcome environmental problems, and by en-
couraging citizen science data collection and collaboration, iNaturalist
may be able to enact positive behavioral change for conservation; al-
though understanding the relation between actions and attitude in ci-
tizen science will require greater social science research (Sandbrook
et al., 2013).

A collaborative approach between the participants of a citizen sci-
ence project, project managers, and conservation and/or restoration
projects will help to maximize the value of increasingly popular citizen
science data (Fig. 6). Local project managers (e.g., City Nature Chal-
lenge) can use our framework to encourage best practice sampling of
urban biodiversity. For instance, participants could be encouraged to
reflect on where they are sampling (more or less urban), what they are
sampling (i.e. the “urbanness” of the species they are observing), or by
encouraging competition among event organizers or towns to identify
which places have the least urban community of plants and animals
(e.g., Figs. 5 and 6). We demonstrated that there is currently a strong
relationship between the underlying urbanization value of a town and
the observations submitted from that town (Fig. 3). But there is clearly
variation in this, and this can likely be spurred on by individual efforts,
where participants are encouraged to sample “where the wild things
are”. For example, participants may be encouraged to sample deeper
into parks, fields, or local forests rather than simply at the parking lot or
alongside roads. Our framework is also easily adaptable to other cities
throughout the world, given the prevalence of iNaturalist data and the
growing contributions to the platform and CNC project. We used local
towns as grouping factors throughout the Boston CNC area, but these
could be grouped by grids, different geo-political boundaries, or

Fig. 5. The residuals between Town
Biodiversity Urbanness Index and
Town Underlying Urbanness
Indexextracted and plotted based on
the relative ranking of over- and under-
performance for each of the 87 towns
considered for analyses. Over-per-
forming towns are towns that have less
urban tolerant species than would be
expected based on their Town
Underlying Urbanness Index, and vice
versa for underperforming towns.
These residuals are plotted based on
the ranking (left) and spatially (right).
An interactive version of the left-hand
panel is here.

Fig. 6. The theoretical positive-feedback loop that can be implemented through
our proposed framework. Species-specific urbanness can be derived from ci-
tizen science data, and then community-level urbanness values can be derived
across multiple taxa. These provide baseline data for future urban restoration
projects, and local citizen science project managers can direct participants to
sample meaningfully to help monitor urban biodiversity through citizen science
projects.
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through spatial clustering approaches to better understand biological
community-level urbanness responses within cities. We have used
towns as a way that both the participants and municipal government
agencies perceive their activities. Towns, municipalities, and other
policy bodies could use these species-specific scores to help identify
species which can be targeted for restoration and conservation projects
(i.e., by targeting species with low urban scores; Callaghan et al.,
2019b). Lastly, and importantly, these same policy bodies can then use
the citizen science data to track how their restoration targets are per-
forming in a positive feedback loop (Fig. 6).

While we have demonstrated the power of broad-scale citizen sci-
ence data, these data are not without their flaws and biases. We used
strict filters to remove species and observations from potential inclusion
(e.g., only included species with < 30 m accuracy in their observation,
removed marine species) in order to ensure we minimized the possi-
bility of mismatch between a species' location and its measure of VIIRS
night-time lights. This leaves many missing data from our current fra-
mework and future work should further investigate the complex trade-
offs in quantity versus quality of data. These missing data include
species that were excluded based on our criteria but more importantly
many undetected species that have yet to be submitted to iNaturalist or
that are hard to verify using photo identification (e.g., grasses, sedges,
flies, ants). In our approach, we assumed that these data are missing at
random with respect to the urbanness of a given species (Nakagawa and
Freckleton, 2008). That is, it is equally likely for a nonurban species and
an urban species to be missing. We assume this because there are many
taxonomic biases within citizen science data (Wei et al., 2016) that are
likely driving the missingness of species, and even within a specific
taxonomic group there are likely biases which influence the likelihood
of a species being detected, submitted, and identified in iNaturalist. For
example, some charismatic species may be over-represented, or
common species could be less frequently reported because many people
use iNaturalist to learn identifications and once a species is known, a
user may be less likely to submit records of that species. Another cri-
tique of this approach might be that most data from iNaturalist included
in our analysis has been sampled “conveniently” (Anderson, 2001); the
observations are generally collected at a time and place convenient for
the observer to record that observation (e.g., by their house, at a
parking lot, along a trail). We might, for example, expect that it would
be less convenient to sample in rural areas because there are fewer trails
or less access there. However, at a town-level we did not find that the
location of observations (i.e., Opportunistic Observation Index) de-
viated significantly from what was available (i.e., Town Underlying
Urbanness Index) to observers; people sampled in urban locations in
proportion to that which was available. We suspect the bias of con-
venience sampling might become more problematic when comparing
regions that have different ease of access. And more convenient loca-
tions may also lead to more easily-detected species being submitted to
iNaturalist. Future work should look to test how our approach interacts
with missing data, and understand the biases in behaviour patterns that
may influence the urbanness of species submitted to iNaturalist, likely
by relying on simulations. For example, do participants show pre-
ferences for less urban species compared to more urban species? Im-
portantly, our examples here illustrate only one way that these com-
munity-level scores could be used to understand biodiversity responses
to urbanization. We envision these scores being updated regularly,
given the near real-time nature of many citizen science projects, in-
cluding iNaturalist (Callaghan et al., 2019c), and as these data continue
to increase in quantity and quality, so too will the applicability of our
proposed framework.

5. Conclusions

We demonstrated a framework that uses citizen science data to
understand patterns of biodiversity at the town level –– the relevant
socio-economic unit that makes policy-decisions about local

investment, including zoning and building ordinances and restrictions.
It remains to be tested whether planners or managers at the town or
regional level will take-up a more integrated measure of the response of
biodiversity to urbanness such as Town Biodiversity Urbanness Index,
but it may provide a simple index to understand and communicate how
a town compares to others in terms of the nature found there.
Importantly, people's experience with nature will increasingly come
from cities, with potential benefits for human well-being and biodi-
versity conservation both within and outside of cities (Soga and Gaston,
2016; Prévot et al., 2018). Citizen science offers one mechanism in
which we can better understand biodiversity responses to urbanization,
encourage people to interact with the nature within their cities (Cooper
et al., 2007; Li et al., 2019), and simultaneously increase scientific and
environmental literacy (Ballard et al., 2017). Ultimately, citizen science
data are dynamic: hundreds to thousands of observations are submitted
every day. For our study area only, for example, there is clearly an
exponential increase of observations through time (Fig. S12). Collec-
tively, we need to maximize the effectiveness of citizen science data in
conservation, ecology, and natural resource management (McKinley
et al., 2017), ensuring that the immense quantities of data being sub-
mitted to citizen science projects are appropriately used to inform
biodiversity conservation.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2020.108753.
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